putubayong.blogspot.com

Senin, 24 Maret 2014

10 fakultas pertanian terbaik tahun 2014

10 fakultas perekonomian terbaik di indonesia Postingan ini akan membuat sebagai yang membaca kaget akan hasil polling yang telah lama saya buat. tulisan ini adalah benar adanya. jika ada mengelak akan kebenarean tulisan ini, silahkan anda mebuat polling sendiri. hasil polling yang saya buat untuk mengetahui 10 fakultas terbaik indonesia yaitu dengan metode sampling error. metode ini saya kerjakan selama 6 bulan. jadi keabsahan dari hasil ini sangat efektif dan sangat real. berikut 10 fakultas pertanian terbaik di indonesia 1. Fakuktas Pertanian IPB 2. Fakultas Pertanian UNHAS 3. Fakultas Pertanian UGM 4. Fakultas Pertanian UNPAD 5. Fakultas Pertanian USU 6. Fakultas Pertanian UNILA 7. Fakultas Pertanian UNTAD 8. Fakultas Pertanian UNAND 9. Fakultas Pertanian UNBRAW 10 Fakultas Pertanian UI Kirimkan Ini lewat EmailBlogThis!Berbagi ke TwitterBerbagi ke FacebookBagikan ke Pinterest

10 jurusan terbaik di tahun 2014

Bagi anda yang ingin melanjutkan pendidikan di Perguruan Tinggi pasti tidak ingin salah langkah dengan memilih jurusan kuliah nantinya. Karena sebaiknya anda memilih jurusan kuliah sesuai dengan apa yang anda sukai sesuai minat anda. Nah sebelum menentukan pilihan jurusan kuliah, ada baiknya anda untuk mengintip 10 jurusan kuliah yang dicatat oleh QS Top Universities belakangan ini. 10 jurusan kuliah ini diketahui telah banyak dilirik oleh lulusan Sekolah Menengah Atas saat akan meneruskan pendidikan di Perguruan Tinggi. Berikut adalah data 10 jurusan kuliah yang paling diminati: 1. Kedokteran Peringkat pertama untuk jurusan kuliah terfavorit dipegang oleh jurusan kedokteran. Hal ini tentu saja tidak mengejutkan karena bidang ini terbilang cukup stabil dan permintaan untuk tenaga medis cukup banyak di Indonesia. Well, bagi yang ingin memilih jurusan kuliah ini tentu harus mempersiapkan diri dengan baik karena persaingannya sangat ketat. Kemudian jangan lupa juga untuk memilih Universitas yang memiliki jurusan kedokteran yang berkualitas dan memiliki daya saing. 2. AGROTEKNOLOGI Jurusan kuliah yang satu ini menempati posisi kedua setelah jurusan kedokteran. Tentu saja, karena perkembangan ILMU PERTANIAN saat ini cukup pesat sehingga banyak orang yang memiliki kemampuan menghasilkan produk-produk unggul di bidang pertania sangat dicari. Yang membuat jurusan kuliah ini menjadi pilihan, lulusan dari jurusan agroteknologi berkesempatan memperoleh pekerjaan dengan bayaran yang tinggi, dimanapun itu baik didalam Negeri maupun luar Negeri. 3. Hukum Seperti halnya jurusan kuliah kedokteran, jurusan yang satu ini merupakan salah satu subjek yang menerima banyak permintaan lulusan baru yang memiliki reputasi bagus. Namun tentu saja, untuk sukses di bidang hukum tidak boleh asal memilih Universitas yang menawarkan jurusan hukum. Namun perlu pertimbangan yang matang dalam menentukan pilihan yang berkualitas. 4. Ekonomi Untuk jurusan non-eksakta, Ekonomi menduduki peringkat kedua setelah hukum. Meski lulusan yang berasal dari bidang ekonomi cukup banyak, permintaan perusahaan tetap tinggi. Tujuan orang yang memilih jurusan kuliah ini tentu saja agar mudah mendapatkan pekerjaan setelah selesai melanjutkan pendidikan tinggi kelak. 5. Teknik Mesin Jurusan yang satu ini juga tak kalah banyak dilirik oleh anak-anak yang baru saja lulus SMA karena menawarkan pekerjaan dengan honor yang cukup tinggi. Meski persaingan untuk masuk ke jurusan ini terbilang sulit, tapi minat untuk masuk jurusan kuliah ini tetap saja tinggi. Untuk itu, bagi yang berminat bisa menyiapkan diri saat ini. 6. Psikologi Selain jurusan kedokteran, ada satu jurusan yang tidak berbeda jauh yaitu jurusan Psikologi. Jurusan kuliah ini selalu masuk dalam 10 jurusan terpopuler di Inggris dan bahkan di dunia. Hal ini terbukti dengan banyaknya minat anak-anak yang lulus SMA memilih jurusan Psikologi sebagai pendidikan lanjutan setelah selesai di Sekolah Menengah Atas. 7. Teknik Elektro Untuk bidang jurusan teknik, jurusan teknik elektro menjadi jurusan kedua yang paling banyak diminati setelah jurusan teknik mesin. Jurusan ini terbilang unik karena menawarkan lahan kerja yang sangat disukai anak-anak masa kini yang senang dengan teknologi atau gadget. Tidak heran jurusan ini mampu masuk dalam daftar 10 besar jurusan kuliah yang paling diminati. 8. Matematika Jurusan selanjutnya yang populer adalah matematika. Meski ilmu ini adalah ilmu dasar, permintaan akan ahli Matematika saat ini tetap saja tinggi. Pasalnya, ahli Matematika saat ini memiliki lahan kerja yang sangat luas dibandingkan jurusan lain. Meski dibituhkan kemampuan dalam ketelitian dan kesabaran, namun tetap saja banyak yang memilih jurusan kuliah yang satu ini. 9. Fisika Tidak berbeda jauh dengan jurusan Matematika yang penuh dengan perhitungan, jurusan Fisika juga banyak diminati. Uniknya, minat di jurusan Fisika ini meningkat karena banyaknya film bertema Science seperti “The Big Bang Theory” yang membuat anak-anak muda berubah pikiran bahwa menjadi ilmuwan ternyata keren. 10. Geografi Jurusan kuliah terfavorit yang terakhir ini baru-baru saja banyak diminati yaitu jurusan Geografi. Mempelajari ilmu ini banyak dibilang orang membosankan, akan tetapi karena banyaknya permintaan terhadap ahli Geografi maka jurusan ini menjadi satu yang diminati. Nah, sudah dapat gambaran bukan, sebaiknya anda memilih jurusan kuliah sesuai dengan kemampuan dan minat anda. Karena ilmu yang anda dapatkan kelak akan digunakan sebagai modal anda bekerja dan sukses. Semoga membantu.

DAFTAR PASSING GRADE UNIVERSITAS HASANUDDIN (UNHAS) 2014

Daftar Passing Grade Universitas Hasanudin (UNHAS)TAHUN 2014 JURUSAN IPA 1. Pendidikan Dokter - UNHAS (55,7%) 2. Farmasi - UNHAS (53,8%) 3. Pendidikan Dokter Gigi - UNHAS (50,6%) 4. Agronomi - UNHAS (29.02%) 5. Arsitektur - UNHAS (39.16%) 6. Biologi - UNHAS (28.77%) 7. Budi Daya Perairan - UNHAS (28.30%) 8. Fisika - UNHAS (29.16%) 9. Geofisika (Meteorologi) - UNHAS (36.66%) 10. Ilmu Hama dan Penyakit Tumbuhan - UNHAS (26.66%) 11. Ilmu Kelautan - UNHAS (33.83%) 12. Ilmu Tanah - UNHAS (29.16%) 13. Kesehatan Masyarakat - UNHAS (28.47%) 14. Kimia - UNHAS (27.77%) 15. Manajemen Hutan - UNHAS (28.05%) 16. Manajemen Sumber Daya Perairan - UNHAS (27.36%) 17. Matematika - UNHAS (29.16%) 18. Nutrisi dan Makanan Ternak - UNHAS (28.88%) 19. Pemanfaatan Sumber Daya Perikanan - UNHAS (23.88%) 20. Produksi Ternak - UNHAS (27.36%) 21. Sastra Arab - UNHAS (24.53%) 22. Sosial Ekonomi Pertanian (Agrobisnis) - UNHAS (28.05%) 23. Sosial Ekonomi Peternakan - UNHAS (24.16%) 24. Statistika - UNHAS (33.38%) 25. Teknik Elektro - UNHAS (39.16%) 26. Teknik Geologi - UNHAS (34.52%) 27. Teknik Mesin - UNHAS (35.55%) 28. Teknik Perkapalan - UNHAS (39.86%) 29. Teknik Pertanian - UNHAS (31.33%) 30. Teknik Sipil - UNHAS (35.55%) 31. Teknologi Hasil Hutan - UNHAS (27.96%) 32. Teknologi Hasil Pertanian - UNHAS (34.44%) JURUSAN IPS 1. Akuntansi - UNHAS (52,6%) 2. Manajemen - UNHAS (52,4%) 3. Ilmu Hubungan Internasional - UNHAS (51%) 4. Sastra Inggris - UNHAS (50,6%) 5. Ilmu Pemerintahan - UNHAS (50,2%) 6. Ilmu Hukum - UNHAS (50%) 7. Antropologi Sosial - UNHAS (30.31%) 8. Arkeologi - UNHAS (28.28%) 9. Ekonomi Akuntansi - UNHAS (43.75%) 10. Ekonomi Manajemen - UNHAS (41.18%) 11. Ekonomi Pembangunan - UNHAS (35.78%) 12. Ilmu Administrasi Negara - UNHAS (38.75%) 13. Ilmu Komunikasi - UNHAS (33.15%) 14. Ilmu Pemerintahan - UNHAS (33.90%) 15. Ilmu Politik - UNHAS (29.75%) 16. Ilmu Sejarah - UNHAS (28.59%) 17. Sastra Daerah - Untuk Sast.Bugis (Makasar) - UNHAS (23.90%) 18. Sastra Indonesia - UNHAS (27.18%) 19. Sastra Inggris - UNHAS (29.34%) 20. Sastra Perancis - UNHAS (28.62%) 21. Sosiologi - UNHAS (30.09%) Semoga dengan daftar passing grade UNHAS ini bisa membantu adek-adek yang membaca dan bisa menjadi bahan acuan dalam penerimaan mahasiswa di UNHAS melalui snmptn, sbmptn atau jalur mandiri yang di adakan oleh Unhas sendiri.

MAKALAH KATABOLISME

BAB I PENDAHULUAN 1.1. Latar Belakang masalah Semua organisme membutuhkan penyediaan materi dan energi yang tetap dari lingkungannya agar tetap hidup. Bagi sejumlah besar organisme, penyediaan utama materi dan satu-satunya penyediaan energi berasal dari molekul organik yang dimakannya (Kimball: 2003: 143). Dengan bantuan enzim, sel secara sistematik merombak molekul organik kompleks yang kaya akan energi potensial menjadi produk limbah yang berenergi lebih rendah. Sebagian energi yang diambil dari simpanan kimiawi dapat dilakukan untuk melakukan kerja; sisanya dilepas sebagai panas. Jalur metabolisme yang melepaskan energi simpanan dengan cara memecah molekul kompleks disebut jalur katabolik (Campbell, 2003: 159). Jalur katabolik dapat terjadi secara aerob (dengan menggunakan oksigen) dan anaerob (tanpa menggunakan oksigen). Terdapat tiga tahap utama di dalam katabolisme aerobik, yaitu makromolekul sel dipecahkan menjadi unit-unit pembangun utamanya (tahap I), produk yang telah terbentuk pada tahap I selanjutnya diubah menjadi molekul yang lebih sederhana (tahap II), produk akhir dari tahap II yang berupa asetil KoA selanjutnya memasuki lintas akhir (tahap III). Pada tahap akhir ini, terjadi oksidasi nutrien, menghasilkan karbon dioksida, air dan amonia sebagai produk akhirnya. Penguraian enzimatik dari masing-masing nutrien penghasil utama energi utama pada sel (karbohidrat, lipid, dan protein) berlangsung secara bertahap melalui sejumlah reaksi enzimatik yang berurutan dan berbeda antara satu nutrien dengan nutrien lainnya. Oleh karena itu, penulis tertarik untuk membahas mengenai proses katabolisme nutrien penghasil utama pada sel dalam makalah ini. B. Rumusan Masalah Adapun rumusan masalah yang akan dibahas dalam makalah ini adalah sebagai berikut. 1. Apakah pengertian dari katabolisme? 2. Tahap-tahap apa sajakah yang terdapat dalam proses katabolisme karbohidrat? 3. Tahap-tahap apa sajakah yang terdapat dalam proses glikolisis? 4. Tahap-tahap apakah yang terdapat dalam siklus asam sitrat? 5. Bagaimana proses katabolisme pada protein dan lipid? 1.2. Tujuan penulisan Adapun tujuan penulisan makalah ini adalah sebagai berikut. 1. Mengetahui pengertian katabolisme. 2. Mengetahui tahap-tahap yang terdapat dalam proses katabolisme karbohidrat. 3. Mengetahui tahap-tahap yang terdapat dalam proses glikolisis. 4. Mengetahui tahap-tahap yang terdapat dalam siklus asam sitrat. 5. Mengetahui proses katabolisme pada protein dan lipid. 1.3 Perumusan masalah Dalam karya lmiah yang bertemakan katabolisme dan bagian-bagiannya. BAB II PEMBAHASAN 2.1. Pengertian Katabolisme Menurut Lehninger (2005: 10), katabolisme merupakan fase metabolisme yang bersifat menguraikan, yang menyebabkan molekul organik nutrien seperti karbohidrat, lipid, dan protein yang datang dari lingkungan atau dari cadangan makanan sel itu sendiri terurai di dalam reaksi-reaksi bertahap menjadi produk akhir yang lebih kecil dan sederhana, seperti asam laktat, CO2, dan amonia. Katabolisme diikuti oleh pelepasan energi bebas yang telah tersimpan di dalam struktur kompleks molekul organik yang lebih besar tersebut. Pada tahap-tahap tertentu di dalam lintas katabolik, banyak dari energi bebas ini yang disimpan melalui reaksi-reaksi enzimatik yang saling berkaitan, di dalam bentuk molekul pembawa energi adenosine trifosfat (ATP). Sejumlah energi mungkin tersimpan di dalam atom hidrogen berenergi tinggi yang dibawa oleh koenzim nikotinamida adenine dinukleotida fosfat dalam bentuk tereduksinya, yaitu NAHPD. Katabolisme disebut pula desimilasi (Pratiwi, 2006: 15). B. Katabolisme Karbohidrat Walaupun karbohidrat, lemak, dan protein semuanya dapat diproses dan dikonsumsi sebagai bahan kabar, kita terbiasa untuk mempelajari langkah-langkah respirasi seluler dengan menelusuri perombakan gula glukosa (C6H12O6) (Campbell, 2003: 160). Pembakaran glukosa memerlukan oksigen. Tetapi beberapa sel harus hidup dimana tidak ada atau tidak selalu terdapat oksigen. Sebagai contoh, sel-sel ragi di dalam botol yang tertutup tidak mendapat oksigen. Akan tetapi, semua sel mempunyai peralatan enzimatik untuk mengkatabolis glukosa tanpa bantuan oksigen (Kimball, 2003: 144). Perombakan anarobik (tanpa oksigen) disebut fermentasi. Sedangkan perombakan secara aerobik (menggunakan oksigen) disebut respirasi sel. Tetapi meskipun sel melangsungkan respirasi glukosa dan tidak melakukan fermentasi, langkah-langkah permulaannya tetap sama: langkah-langkah glikolisis. Adapun langkah-langkah katabolisme gula glukosa dapat diuraikan sebagai berikut. 1. Glikolisis Glikolisis berasal dari kata Yunani yang berarti “gula” dan “pelarutan”. Glikolisis merupakan suatu proses penguraian molekul glukosa yang memiliki 6 atom karbon, secara enzimatik, untuk menghasilkan dua molekul piruvat, yang memiliki 3 atom karbon. Selama reaksi-reaksi glikolisis yang berurutan, banyak energi bebas yang diberikan oleh glukosa yang disimpan dalam bentuk ATP (Lehninger, 2005: 73). Proses glikolisis dimulai dengan molekul glukosa dan diakhiri dengan terbentuknya asam laktat. Serangkaian reaksi-reaksi dalam proses glikolisis tersebut dinamakan juga jalur Embden-Meyerhof (Poedjiadi, 1994: 255). Glikolisis terjadi tanpa memandang ada atau tidaknya oksigen molekuler (O2) (Campbell, 2003: 168). Jalur katabolik glikolisis terdiri atas sepuluh langkah, yang masing-masing dikatalisis oleh enzim spesifik. Kita dapat membagi kesepuluh langkah ini menjadi dua fase, yaitu fase investasi energi yang mencakup lima langkah pertama dan fase pembayaran energi yang mencakup lima langkah berikutnya (Campbell, 2003: 165). Adapun langkah-langkah glikolisis dapat dilihat pada bagan berikut ini. Pada tahap pertama, molekul D-Glukosa diaktifkan bagi reaksi berikutnya dengan fosforilasi pada posisi 6, menghasilkan glukosa-6-fosfat dengan memanfaatkan ATP (Gambar 2). Reaksi ini bersifat tidak dapat balik. Enzim heksokinase merupakan katalis dalam reaksi tersebut dibantu oleh ion Mg2+ sebagai kofaktor. Reaksi berikutnya ialah isomerasi, yaitu pengubahan glukosa-6-fosfat, yang merupakan suatu aldosa, menjadi fruktosa-6-fosfat, yang merupakan suatu ketosa, dengan enzim fosfoglukoisomerase dan dibantu oleh ion Mg2+. Pada tahap ini fruktosa-6-fosfat diubah menjadi fruktosa-1,6-difosfat oleh enzim fosoffruktokinase dibantu oleh ion Mg2+ sebagai kofaktor. Dalam reaksi ini, gugus fosfat dipindahkan dari ATP ke fruktosa-6-fosfat pada posisi 1. Reaksi tahap keempat dalam rangkaian reaksi glikolisis adalah penguraian molekul fruktosa-1,6-difosfat membentuk dua molekul triosa fosfat, yaitu dihidroksi aseton fosfat dan D-gliseraldehid-3-fosfat oleh enzim aldolase fruktosa difosfat atau enzim aldolase. Hanya satu di antara dua triosa fosfat yang dibentuk oleh aldolase, yaitu gliseraldehid-3-fosfat, yang dapat langsung diuraikan pada tahap reaksi glikolisis berikutnya. Tetapi, dihidroksi aseton fosfat dapat dengan cepat dan dalam reaksi dapat balik, berubah menjadi gliseraldehid-3-fosfat oleh enzim isomerase triosa fosfat. Tahap selanjutnya adalah reaksi oksidasi gliseraldehid-3fosfat menjadi asam 1,3 difosfogliserat. Dalam reaksi ini digunakan koenzim NAD+, sedangkan gugus fosfat diperoleh dari asam fosfat. Enzim yang mengkatalisis dalam tahap ini adalah dehidrogenase gliseraldehida fosfat. Pada tahap ini, enzim kinase fosfogliserat mengubah asam 1,3-difosfogliserat menjadi asam 3-fosfogliserat. Dalam reaksi ini terbentuk satu molekul ATP dari ADP dan memerlukan ion Mg2+ sebagai kofaktor. Pada tahap ini, terjadi pengubahan asam 3-fosfoliserat menjadi asam 2-fosfogliserat. Reaksi ini melibatkan pergeseran dapat balik gugus fosfat dari posisi 3 ke posisi 2. Reaksi ini dikatalisis oleh enzim fosfogliseril mutase dengan ion Mg2+ sebagai kofaktor. Reaksi berikutnya adalah reaksi pembentukan asam fosfoenolpiruvat dari asam 2-fosfogliserat dengan katalisis enzim enolase dan ion Mg2+ sebagai kofaktor. Reaksi pembentukan asam fosfoenol piruvat ini ialah reaksi dehidrasi. Tahap terakhir pada glikolisis ialah reaksi pemindahan gugus fosfat berenergi tinggi dari fosfoenolpiruvat ke ADP yang dikatalisis oleh enzim piruvat kinase sehingga terbentuk molekul ATP dan molekul asam piruvat. Glikolisis melepaskan energi kurang dari seperempat energi kimiawi yang tersimpan dalam glukosa; sebagian besar energi itu tetap tersimpan dalam dua molekul piruvat (Campbell, 2003: 168). Terdapat tiga jalur penting yang dapat dilalui oleh piruvat setelah glikolisis. Pada organism aerobik, glikolisis menyususun hanya tahap pertama dari keseluruhan degradasi aerobik glukosa menjadi CO2 dan H2O. Lintas piruvat ke dua adalah reduksinya menjadi laktat, jika jaringan hewan dalam keadaan anaerobik, terutama pada kontraksi aktif otot kerangka.Lintas piruvat utama yang ketiga menyebabkan pembentukan etanol (Lehninger, 2005: 73-74). 2. Siklus Asam Sitrat Karbohidrat, asam lemak, dan hamper semua asam amino, akhirnya dioksidasi menjadi CO2 dan H2O melalui siklus asam sitrat (Lehninger, 2005: 115). Siklus asam sitrat adalah serangkaian reaksi kimia dalam sel, yaitu pada mitokondria, yang berlangsung secara berurutan dan berulang, bertujuan untuk mengubah asam piruvat menjadi CO2, H2O dan sejumlah energi. Proses ini adalah proses oksidasi dengan menggunakan oksigen atau aerob. Siklus asam sitrat ini disebut juga siklus Krebs, menggunakan nama Hans Krebs, seorang ahli biokimia yang banyak jasa atau sumbangannya dalam penelitian tentang metabolisme karbohidrat. Setelah memasuki mitokondria, piruvat mula-mula diubah menjadi suatu senyawa yang disebut asetil CoA. Langkah ini merupakan persambungan antara glikolisis dan siklus Krebs, yang diselesaikan oleh kompleks multi enzim yang mengkatalisis tiga reaksi: (1) Gugus karboksil piruvat, yang memiliki sedikit energi kimiawi, dikeluarkan dan dilepas sebagai molekul CO2, (2) Fragmen berkarbon dua yang tersisa dioksidasi untuk membuat senyawa yang dinamai asetat. Suatu enzim mentransfer elektron yang diekstraksi ke NAD+, dan menyimpan energi dalam bentuk NADH, (3) Akhirnya, koenzim A, senyawa mengandung sulfur turunan dari vitamin B, diikatkan pada asetat tadi oleh ikatan tak stabil yang membuat gugus asetil sangat reaktif (Campbell, 2003: 168). Gabungan dehidrogenasi dan dekarboksilasi piruvat menjadi asetil KoA melibatkan kerja tiga enzim yang berbeda secara berurutan, yaitu piruvat dehidrogenase (E1), dihidrolipoil transasetilase (E2), dan dihidrolipoil dehidrogenase (E3), dan juga lima koenzim atau gugus prostetik yang berbeda, tiamin pirofosfat (PPP), flavin adenine dinukleotida (FAD), koenzim A (CoA), nikotinamida adenin dinukleotida (NAD+), dan asam lipoat (Lehninger, 2005: 116). Tahapan pembentukan asetil CoA dari asam piruvat dapat dilihat pada bagan berikut ini. Reaksi pertama pada siklus Krebs adalah pembentukan asam sitrat dari asetil KoA dengan asam oksaloasetat dengan cara kondensasi. Enzim yang bekerja sebagai katalis adalah sitrat sintetase. Pada reaksi ini, karbon meil gugus asetil dari asetil KoA berkondensasi dengan gugus karbonil pada oksaloasetat; secara serentak, ikatan tioester dipecahkan untuk membebaskan koenzim A. Asam sitrat kemudian diubah menjadi asam isositrat melalui asam akonitat. Enzim yang bekerja pada reaksi ini ialah akonitase. Pada reaksi ini, satu molekul air dikeluarkan dan yang lain ditambahkan kembali. Pada tahap selanjutnya, asam isositrat diubah menjadi menjadi asam oksalosuksinat oleh enzim isositrat dehidrogenase dengan koenzim NADP+, kemudian diubah lebih lanjut menjadi asam a-ketoglutarat oleh enzim karboksilase. Pada reaksi yang kedua ini dihasilkan pula CO2. Untuk 1 mol asam isositrat yang diubah dihasilkan 1 mol NADPH dan 1 mol CO2. Pada tahap selanjutnya, a-ketoglutarat mengalami dekarboksilasi oksidatif, membentuk suksinil KoA dan CO2 oleh kerja kompleks a-ketoglutarat dehidrogenase. Raksi ini analog dengan reaksi pembentukan asetil KoA dari asam piruvat. Koenzim TPP dan NAD+ diperlukan juga dalam reaksi pembentukan suksinil KoA. Reaksi ini menghasilkan Suksinil KoA dan melepaskan CO2 da NADH. Asam suksinat terbentuk dari suksinil KoA dengan cara melepaskan koensim A serta pembentukan guanosin trifosfat (GTP) dari guanosin difosfat (GDP). Enzim suksinil KoA sintetase bekerja pada reaksi yang bersifat reversible ini. Gugus fosfat yang terdapat pada molekul GTP segera dipindahkan kepada ADP. Katalis dalam reaksi ini adalah dinukleosida difosfokinase. Pada tahap ini, asam suksinat diubah menjadi asam fumarat melalui proses oksidasi dengan menggunakan enzim suksinat dehidrogenase dan FAD sebagai koenzim. Asam malat terbentuk dari asam fumarat dengan cara adisi molekul air. Enzim fumarat hidratase atau yang lebih dikenal dengan nama enzim fumarase, bekerja sebagai katalis dalam reaksi ini. Tahap akhir dalam siklus asam sitrat ialah dehidrogenasi asam malat untuk membentuk asam oksaloasetat yang dikatalisis oleh enzim malat dehidrogenase. Oksaloasetat yang terjadi kemudian bereaksi dengan asetil koenzim A dan asam sitrat yang terbentuk bereaksi lebih lanjut dalam siklus asam sitrat. Demikian reaksi-reaksi tersebut di atas berlangsung terus menerus dan berulang kali. Tahap-tahap dalm siklus Krebs ini dapat digambarkan sebagai berikut. 3. Rantai Transpor Elektron Pada sistem transpor elektron, berlangsung pengepakan energi dari glukosa menjadi ATP. Reaksi ini terjadi di dalam membrane dalam mitokondria. Hidrogen dari siklus Krebs yang tergabung dalam FADH2 dan NADH diubah menjadi elektron dan proton. Sebagai pembawa elektron adalah sejenis protein dan gugus yang dapat berkaitan dengan protein. Golongan ini mencakup NAD, FAD, ubikuinon, dan protein sitokrom. Pada sistem transpor elektron ini, oksigen adalah akseptor elektron terakhir. Setelah menerima elektron, O2 akan bereaksi dengan H+ membentuk H2O (Pratiwi, 2006: 32). 4. Fermentasi Katabolisme anaerobik dari nutrien organik dapat terjadi dengan fermentasi. Fermentasi terdiri atas glikolisis ditambah dengan reaksi yang menghasilkan NADH ke piruvat. Terdapat banyak jenis fermentasi, perbedaannya dalam produk limbahnya yang terbentuk dari piruvat. Dua jenis yang umum ialah fermentasi alkohol dan fermentasi asam laktat (Campbell, 2003: 174). a. Fermentasi Alkohol Pada fermentasi alkohol, piruvat diubah menjadi etanol (etil alkohol) dalam dua langkah. Langkah pertama, melepaskan karbon dioksida dari piruvat, yang diubah menjadi senyawa asetaldehida berkarbon dua. Dalam langkah kedua, asetaldehida direduksi oleh NADH menjadi etanol. Ini meregenerasi pasokan NAD+ yang dibutuhkan untuk glikolisis. Fermentasi alkohol oleh ragi, digunakan dalam pembuatan bir dan anggur. Banyak bakteri juga melakukan fermentasi alkohol dalam kondisi anaerobik (Campbell, 2003: 174). b. Fermentasi Asam Laktat Pada fermentasi asam laktat, piruvat direduksi langsung oleh NADH untuk membentuk laktat sebagai produk limbahnya, tanpa melepas CO2 (Campbell, 2003: 174). Fermentasi asam laktat dapat terjadi pada fungi atau bakteri. Selain itu, fermentasi asam laktat juga dapat terjadi pada otot-otot yang bekerja terlalu berat, yang oksigennya tidak cukup untuk respirasi sel (Kimball, 2003: 150). C. Katabolisme Protein Tahap awal metabolisme asam amino melibatkan pelepasan gugus amino, kemudian baru perubahan kerangka karbon pada molekul asam amino. Dua proses utama pelepasan gugus amino, yaitu 1) transaminasi, yaitu proses katabolisme asam amino yang melibatkan gugus amino dari satu asam amino kepada asam amino lain, 2) deaminasi oksidatif yang menggunakan enzim dehidrogenase sebagai katalis (Poedjiadi, 1994: 301-302). Pada gambar berikut terlihat bahwa kerangka karbon dari 10 asam amino menghasilkan asetil KoA, yang laangsung memasuki siklus asam sitrat. Lima dari sepuluh asam amino diuraikan menjadi asetil KoA melalui piruvat. Kelima asam amino yang masuk melalui piruvat adalah alanin, sistein, glisin, serin, dan treonin. Sedangkan lima lainnya, yaitu asam amino fenilalanin, tirosin, lisin, tritofan, dan leusin sebagian karbon asam aminonya menghasilkan asetoasetil KoA, yang lalu diubah menjadi asetil KoA. Kerangka karbon metionin, isoleusin, dan valin lambat laun terdegradasi oleh lintas yang menghasilkan suksinil KoA, senyawa antara siklus asam sitrat. Fenilalanin dan tirosin masing-masing menghasilkan dua produk dengan 4 karbon, yaitu asetoasetat dan fumarat. Asetoasetat memasuki siklus asam sitrat dalam bentuk asetil KoA. Kerangka karbon asparagin dan asam aspartat pada akhirnya memasuki siklus asam sitrat melalui oksaloasetat (Lehninger, 2005: 225, 226, 232, 233, 234). Asam amino dihasilkan dari proses hidrolisis protein. Setelah gugus amino dari asam amino dilepas, beberapa asam amino diubah menjadi asam piruvat dan ada juga diubah menjadi asetil koenzim A. Gugus amino yang dilepas dari asam amino dibawa ke hati untuk diubah menjadi amoniak (NH3) dan dibuang lewat urine, 1 gram protein menghasilkan energi yang sama dengan 1 gram karbohirat (Anonim, 2009). D. Katabolisme Lipid Jika sumber energi dari karbohidrat telah mencukupi, maka asam lemak mengalami esterifikasi yaitu membentuk ester dengan gliserol menjadi trigliserida sebagai cadangan energi jangka panjang. Jika sewaktu-waktu tak tersedia sumber energi dari karbohidrat barulah asam lemak dioksidasi. Proses oksidasi asam lemak dinamakan oksidasi beta dan menghasilkan asetil KoA. Selanjutnya sebagaimana asetil KoA dari hasil metabolisme karbohidrat dan protein, asetil KoA dari jalur inipun akan masuk ke dalam siklus asam sitrat sehingga dihasilkan energi (Nugroho, 2009). Lebih lanjut Nugroho menguraikan proses metabolisme asam lemak sebagai berikut. 1. Katabolisme Gliserol Gliserol sebagai hasil hidrolisis lipid (trigliserida) dapat menjadi sumber energi. Gliserol ini selanjutnya masuk ke dalam jalur metabolisme karbohidrat yaitu glikolisis. Pada tahap awal, gliserol mendapatkan 1 gugus fosfat dari ATP membentuk gliserol 3-fosfat. Selanjutnya senyawa ini masuk ke dalam rantai respirasi membentuk dihidroksi aseton fosfat, suatu produk antara dalam jalur glikolisis. 2. Oksidasi Asam Lemak (Oksidasi Beta) Sebelum dikatabolisir dalam oksidasi beta, asam lemak harus diaktifkan terlebih dahulu menjadi asil-KoA. Dengan adanya ATP dan Koenzim A, asam lemak diaktifkan dengan dikatalisir oleh enzim asil-KoA sintetase (Tiokinase). Asam lemak bebas pada umumnya berupa asam-asam lemak rantai panjang. Asam lemak rantai panjang ini akan dapat masuk ke dalam mitokondria dengan bantuan senyawa karnitin. Langkah-langkah masuknya asil KoA ke dalam mitokondria dijelaskan sebagai berikut. a. Asam lemak bebas (FFA) diaktifkan menjadi asil-KoA dengan dikatalisir oleh enzim tiokinase. b. Setelah menjadi bentuk aktif, asil-KoA dikonversikan oleh enzim karnitin palmitoil transferase I yang terdapat pada membran eksterna mitokondria menjadi asil karnitin. Setelah menjadi asil karnitin, barulah senyawa tersebut bisa menembus membran interna mitokondria. c. Pada membran interna mitokondria terdapat enzim karnitin asil karnitin translokase yang bertindak sebagai pengangkut asil karnitin ke dalam dan karnitin keluar. d. Asil karnitin yang masuk ke dalam mitokondria selanjutnya bereaksi dengan KoA dengan dikatalisir oleh enzim karnitin palmitoiltransferase II yang ada di membran interna mitokondria menjadi Asil Koa dan karnitin dibebaskan. e. Asil KoA yang sudah berada dalam mitokondria ini selanjutnya masuk dalam proses oksidasi beta. Pada proses oksidasi beta, asam lemak masuk ke dalam rangkaian siklus dengan 5 tahapan proses dan pada setiap proses, diangkat 2 atom C dengan hasil akhir berupa asetil KoA. Selanjutnya asetil KoA masuk ke dalam siklus asam sitrat. Menurut Poedjiadi (1994: 279-280), tahapan-tahapan tersebut adalah sebagai berikut. a. Pembentukan asil KoA dari asam lemak berlangsung dengan katalis enzim asil KoA sintetase yang disebut juga tiokinase. b. Reaksi kedua adalah reaksi pembentukan enoil KoA dengan cara oksidasi. Enzim asil KoA dehidrogenase berperan sebagai katalis dalam reaksi ini. Koenzim yang dibutuhkan dalam reaksi ini adalah FAD yang berperan sebagai akseptor hydrogen. Dua molekul ATP dibentuk untuk tiap pasang electron yang ditransportasikan dari molekul FADH2 melalui sistem transport electron. c. Pada reaksi ketiga, enzim enoil KoA hidratase merupakan katalis yang menghasilkan L-hidroksiasil KoA. Reaksi ini ialah reaksi hidrasi terhadap ikatan rangkap anatar C-2 dan C-3. d. Reaksi keempat adalah reaksi oksidasi yang mengubah hidroksiasil koenzim A menjadi ketoasil koenzim A. Enzim L-hidrokdiasil koenzim A dehidrogenase melibatkan NAD yang direduksi menjadi NADH. e. Tahap kelima adalah reaksi pemecahan ikatan C-C, sehingga menghasilkan aseil koenzim A dan asil koenzim A yang mempunyai jumlah atom C dua buah lebih pendek dari molekul semula. Asil KoA yang terbentuk pada reaksi tahap 5, mengalami metabolisme lebih lanjut melalui reaksi tahap 2 hingga tahap 5 dan demikian seterusnya sampai rantai C pada asam lemak terpecah menjadi molekul-molekul asetil KoA. Selanjutnya asetil KoA dapat teroksidasi menjadi CO2 dan H2O melalui siklus asam sitrat (Poedjiadi, 1994: 282). Asetil KoA yang dihasilkan dari oksidasi asam lemak tidak berbeda dengan asetil KoA yang dibentuk dari piruvat (Lehninger, 2005: 204). Tahapan-tahapan dalam oksidasi asam lemak ini dapat dilihat pada gambar 27 berikut ini. BAB III KESIMPULAN Berdasarkan uraian di atas, maka dapat disimpulkan sebagai berikut. 1. Katabolisme (desimiliasi) merupakan fase metabolisme yang bersifat menguraikan, yang menyebabkan molekul organik nutrien terurai di dalam reaksi-reaksi bertahap menjadi produk akhir yang lebih kecil dan sederhana, seperti asam laktat, CO2, dan amonia. 2. Katabolisme karbohidrat, khususnya glukosa terdiri atas tahap glikolisis, dekarboksilasi oksidatif, siklus asam sitrat, dan rantai transpor elektron pada kondisi aerob. Sedangkan pada kondisi anaerob, katabolisme glukosa berupa fermentasi. 3. Proses glikolisis dimulai dengan molekul glukosa dan diakhiri dengan terbentuknya asam laktat. Dalam proses glikolisis terdiri atas 10 tahapan reaksi yang dikatalisis oleh enzim spesifik. Kesepuluh tahapan dalam glikolisis dapat dibagi menjadi dua fase, yaitu fase investasi energi dan fase pembayaran energi. 4. Tahapan-tahapan yang terdapat dalam siklus asam sitrat adalah (a) pembentukan asam sitrat dari asetil KoA dengan asam oksaloasetat, (b) pembentukan asam isositrat oleh enzim akonitase, (c) pembentukan asam a-ketoglutarat oleh enzim karboksilase, (d) a-ketoglutarat mengalami dekarboksilasi oksidatif, membentuk suksinil KoA oleh enzim a-ketoglutarat dehidrogenase, (e) asam suksinat terbentuk dari suksinil KoA oleh enzim suksinil KoA sintetase, (f) pembentukan asam fumarat dengan menggunakan enzim suksinat dehidrogenase, (g) pembentukan asam malat oleh enzim fumarase, (h) pembentukan asam oksaloasetat oleh enzim malat dehidrogenase, (i) pembentukan a-ketoglutarat oleh enzim karboksilase. 5. Katabolisme protein diawali dengan tahap transaminasi dan deaminasi oksidatif. Setelah gugus amino dari asam amino dilepas, beberapa asam amino diubah menjadi asam piruvat dan ada juga diubah menjadi asetil koenzim A. Gugus amino yang dilepas dari asam amino dibawa ke hati untuk diubah menjadi amoniak (NH3) dan dibuang lewat urine. Sedangkan katabolisme lemak dimulai dengan pemecahan lemak menjadi gliserol dan asam lemak. Gliserol dirubah menjadi gliseral dehid 3-fosfat dan selanjutnya mengikuti jalur glikolisis sehingga terbentuk piruvat. Sedangkan asam lemak dapat dipecah menjadi molekul-molekul dengan 2 atom C. Molekul dengan 2 atom C ini kemudian diubah menjadi asetil koenzim A. DAFTAR PUSTAKA Anonim. 2009. Katabolisme. http://www.webng.com/spons/katabolisme.html. Diakses pada tanggal Senin, 29 Juni 2009 Aprilia. 2009. Metabolisme Asam Amino. http://www. http://www.scribd.com/document_downloads/8216443?extension=pdf&secret_password=. Diakses pada tanggal Senin, 29 Juni 2009. Campbell, dkk. 2003. Biology Jilid I. Jakarta: Erlangga. Kimball, dkk. 2003. Biology Jilid I. Jakarta: Erlangga. Lehninger. 2005. Dasar-dasar Biokimia Jilid 2. Jakarta: Erlangga. Nugroho. 2009. Respirasi Seluler. http://biodas.files.wordpress.com/2007/09/04-respirasi-sel.ppt. Diakses pada tanggal Senin, 29 Juni 2009. Nuringtyas, Tri Rini. 2009. Metabolisme Karbohidrat. http://elisa.ugm.ac.id/files/chimera73/uJTdO7NM/Metabolisme%20KH%20(ok).ppt. Diakses pada tanggal Senin, 29 Juni 2009 Poedjiadi, Anna. 1994. Dasar-dasar Biokimia. Jakarta: UI Press.

Senin, 03 Maret 2014

ENZIM PADA TUMBUHAN

I. ENZIM PADA TUMBUHAN SEJARAH TENTANG ENZIM Pada awalnya, enzim dikenal sebagai protein oleh Sumner ( 1926 ) yang telah berhasil mengisolasi urease dari tumbuhan kara pedang. Urease adalah enzim yang dapat menguraikan urea menjadi CO2 dan NH3. Beberapa tahun kemudian Northrop dan Kunits dapat mengisolasi pepsin, tripsin, dan kinotripsin. Kemudian makin banyak enzim yang telah dapat diisolasi dan telah dibuktikan bahwa enzim tersebut ialah protein. Dari hasil penelitian para ahli biokim ternyata banyak enzim mempunyai gugus bukan protein, jadi termasuk golongan protein majemuk. Gugus bukan protein ini disebut dengan kofaktor ada yang terikat kuat pada protein dan ada pula yang tidak terikat kuat oleh protein. Gugus terikat kuat pada bagian protein artinya sukar terurai dalam larutan yang disebut dengan Prostetik, sedang yang tidak begitu terikat kuat ( mudah dipisahkan secara dialisis ) disebut dengan Koenzim. Keduanya ini dapat memungkinkan enzim bekerja terhadap substrat. PENGERTIAN ENZIM Enzim ialah suatu zat yang dapat mempercepat laju reaksi dan ikut beraksi didalamnya sedang pada saat akhir proses enzim akan melepaskan diri seolah – olah tidak ikut bereaksi dalam proses tersebut. Enzim merupakan reaksi atau proses kimia yang berlangsung dengan baik dalam tubuh makhluk hidup karena adanya katalis yang mampu mempercepat reaksi. Koenzim mudah dipisahkan dengan proses dialisis. Enzim berperan secara lebih spesifik dalam hal menentukan reaksi mana yang akan dipacu dibandingkan dengan katalisator anorganik sehingga ribuan reaksi dapat berlangsung dengan tidak menghasilkan produk sampingan yang beracun. Enzim terdiri dari apoenzim dan gugus prostetik. Apoenzim adalah bagian enzim yang tersusun atas protein. Gugus prostetik adalah bagian enzim yang tidak tersusun atas protein. Gugus prostetik dapat dikelompokkan menjadi dua yaitu koenzim (tersusun dari bahan organik) dan kofaktor (tersusun dari bahan anorganik). PERBEDAAN ENZIN DENGAN KATALISATOR Katalisator bersifat umum, hanya berfungsi untuk mempercepat reaksi yang dapat digunakan berulang - ulang ( satu katalisator mampu mereaksikan 2 atau 3 bahkan lebih reaksi) Enzim bersifat lebih spesifik hanya digunakan untuk satu reaksi saja ( satu enzim hanya untuk satu reaksi) METABOLISME TUMBUHAN Tumbuhan juga mengahasilkan senyawa metabolit sekunder yang berfungsi untuk melindungi tumbuhan dari serangan serangga, bakteri, jamur dan jenis patogen lainnya serta tumbuhan itu mampu menghasilkan vitamin untuk kepentingan tumbuhan itu sendiri serta hormon – hormon yang merupakan sarana bagi tumbuhan untuk berkomunikasi antara organnya atau jaringannya dalam mengendalikan dan mengkoordinasi pertumbuhan dan perkembangannya. Dalam tumbuhan pun terdapat proses metabolisme tumbuhan yang terdiri dari anabolisme ( pembentkan senyawa yang lebih besar dari molekul – molekul yang lebih kecil, molekul ini terdiri dari pati, selulose, protein, lemak dan asam lemak. Proses ini membutuhkan energi).Sedangkan katabolisme merupakan senyawa dengan molekul yang besar membentuk senyawa – senyawa dengan molekul yang lebih kecil dan menghasilkan energi. Sel dalam tubuh tumbuhan mampu mengatur lintasan – lintasan metabolik yang dikendalikannnya agar terjadi dan dapat mengatur kecepatan reaksi tersebut dengan cara memproduksi suatu katalisator dalam jumlah yang sesuai dan tepat pada saat dibutuhkan. Katalisator inilah yang disebut dengan enzim yang mampu mempercepat laju reaksi yang berkisar antara 108 sampai 1020. SIFAT – SIFAT ENZIM Sifat-sifat enzim adalah sebagai berikut: 1 Biokatalisator Enzim mempercepat laju reaksi, tetapi tidak ikut bereaksi. 2 Termolabil Enzim mudah rusak bila dipanaskan sampai dengan suhu tertentu. 3 Merupakan senyawa protein 4 Bekerja secara spesifik.Satu jenis enzim bekerja secara khusus hanya pada satu jenis substrat. Misalnya enzim katalase menguraikan Hidrogen peroksida (H2O2) menjadi air (H2O) dan oksigen (O2), sedangkan enzim lipase menguraikan lemak + air menjadi gliserol + asam lemak. F. SUSUNAN ENZIM Secara kimia, enzim yany lengkap (holoenzim) tersusun atas 2 bagian yaitu: 1. Bagian protein disebut Apoenzim yang bersifat labil ( mudah berubah) yang dipengaruhi oleh suhu dan keasaman. 2. Bagian yang bukan protein yang disebut dengan gugus prostetik ( gugusan aktif) yang berasal dari kofaktor. G. KOMPOSISI KIMIA DAN STRUKTUR 3-DIMENSI ENZIM Setiap enzim terbentuk dari molekul protein sebagai komponen utama penyusunnya dan bebrapa enzim hanya terbentuk dari molekul protein dengan tanpa adanya penambahan komponen lain. Protein lainnya seperti Sitokrom yang membawa elektron pada fotosintesis dan respirasi tidak pula dapat digolongkan sebagai enzim. Selain itu, protein yang terdapat dalam biji juga lebih berperan sebagai bahan cadangan untuk digunakan dalam proses perkecambahan biji. Protein hanya terbentuk dari satu ikatan poloipeptida yang menggumpal membentuk suatu struktur yang bulat atau sperikal, contohnya ribonuklease. Setiap rantai polipeptida atau molekul protein secara sponstan akan membentuk konfigurasi dengan energi bebas terendah. Dalam sitisol sel, asam amino lebih bersifat hidrofobik yang akan mengumpul pada bagian dalam, sedang pada permukaan molekul protein atau enzim asan amino bersifat hidrofilik. H. KOMPERTEMENTASI ENZIM Enzim – enzim yang berperan untuk fotosintesis terdapat pada kloroplas. Enzim yang berperan penting dalam respirasi aerobik terdapat pada mitokondria, sedang enzim respirasi lainnya terdapat dalam sitosol. Kompertemenisasi enzi akan meningkat edisiensi banyak proses yang beralngsung di dalam sel, karena : 1. Reaktan tersedia pada tempat dimana enzim tersedia. 2. Senyawa akan dikonversi dikirim ke arah enzim yang berperan untuk menghasilakn produk sesuai yang dikehendaki dan tidak disimpangkan pada lintasan yang lain. Akan tetapi kompartemenisasi ini tidak bersifat absolut. I. FUNGSI SPESIFIK, NOMENKLATUR dan PENGGOLONGAN ENZIM. a. Fungsi Enzim Yaitu sebagai katalis untuk proses biokimia yang terjadi dalam sel maupun di luar sel makhluk hidup. Enzim ini berfungsi sebagai katalis yang sangan efisien dan mempunyai derajat yang tinggi. b. Tata nama dan Kekhasan Enzim Setiap enzim disesuaikan dengan nama substratnya dengan menambahkan “ase” dibelakangnya. Kekhasan enzim asam amino sebagai substrat dapat mengalami reaksi berbagai enzim. c.Penggolongan Enzim Enzim dapat digolongkan ke dalam 6 golongan yaitu : 1. Oksidoreduktase terdapat dua enzimyaitu dehidrogenase dan oksidasi 2. Transferase yaitu enzim yang bekerja sebagai katalis pada reaksi pemindahan suatu gugus dari suatu senyawa lain 3. Hidrolase yaitu sebagai katalis reaksi hidrolisis 4. Liase berperan dalam proses pemisahan 5. Isomerase bekerja pada reaksi intramolekuler 6. Ligase bekerja pada penggabungan dua molekul Fotosintesis Reaksi fotosintesis dirangkum sebagai berikut: 6CO2 + 12H2O + energy cahaya –> C6H12O6 + 6O2 + 6H2O Oksigen yang dikeluarkan dari tumbuhan berasal dari air dan bukan CO2. Kloroplas menguraikan air menjadi hidrogen dan oksigen. Fotosintesis terdiri dari dua proses. Tahap tersebut adalah reaksi terang dan siklus Calvin. Reaksi terang merupakan tahap fotosintesis yang mengubah energi matahari menjadi energi kimia. Kloroplas menyerap cahaya dan cahaya menggerakkan transfer elektron dan hidrogen ke penerima yaitu NADP+ (nikotinamida adenine dinukleotida fosfat). Pada proses ini, air terurai. Reaksi terang pada fotosintesis ini melepaskan O2. Pada reaksi terang, tenaga matahari mereduksi NADP+ menjadi NADPH dengan menambahkan sepasang electron bersama dengan nukleus hidrogen. Pada reaksi terang juga terjadi fosforilasi yang mengubah ADP menjadi ATP. Jadi energy cahaya diubah menjadi energi kimia dengan pembentukan NADPH: sumber dari elektron berenergi, dan ATP; energy sel yang serba guna. Tahap kedua fotosintesis adalah siklus Calvin yang berawal dari pemasukan CO2 ke dalam molekul organik yang telah disiapkan di dalam kloroplas. Proses ini disebut fiksasi karbon. Siklus Calvin mereduksi karbon terfiksasi menjadi karbohidrat melalui penambahan elektron. Energi untuk mereduksi berasal dari NADPH. Siklus Calvin mengubah CO2 menjadi karbohidrat dengan menggunakan ATP hasil dari reaksi terang. Siklus Calvin disebut juga reaksi gelap atau reaksi tak bergantung cahaya karena tidak memerlukan cahaya secara langsung. Pada fotosintesis, cahaya tampak diserap oleh pigmen. Pigmen yang berbeda menyerap panjang gelombang yang berbeda. Klorofila bukanlah satu-satunya pigmen yang penting dalam kloroplas. Tetapi hanya klorofil a yang dapat berperan secara langsung dalam reaksi terang. Pigmen lain dalam membrane tilakoid dapat menyerap cahaya dan mentransfer energinya ke klorofil a. Salah satunya adalah klorofil b. Jika foton cahaya matahari diserap oleh klorofil b, energi kemudian disalurkan ke klorofil a yang beraksi seolah-olah klorofil inilah yang menyerap energi tersebut. Dalam membran tilakoid, klorofil tersusun bersama protein dan molekul organik lainnya menjadi fotosistem. Fotosistem memiliki kompleks antena yang terdiri dari klorofil a, klorofil b dan karotenoid. Jumlah dan keragaman pigmen membuat fotosistem dapat menyerap spectrum yang lebih luas. Saat molekul antena menyerap foton, energi disalurkan ke klorofl a yang terletak pada pusat reaksi. Molekul yang bersama-sama menggunakan pusat reaksi dengan klorofil a adalah akseptor elektron primer. Pada membran tilakoid terdapat fotosistem I dan fotosistem II. Fotosistem I memiliki pusat klorofil P700 karena pigmen ini paling baik menyerap cahaya yang memiliki panjang gelombang 700 nm. Pusat reaksi fotosistem II memiliki klorofil yang disebut P680 karena paling baik menyerap cahaya pada panjang gelombang 680 nm. Adanya protein yang berbeda menjadi penyebab adanya perbedaan sifat penyerapan cahaya. Aliran Elektron non-siklik Aliran elektron non-siklik dimulai ketika fotosistem II menyerap cahaya , dan electron yang dieksitasi ke tingkat yang lebih tinggi dalam P680 diterima oleh akseptor electron primer. Klorofil yang dioksidasi menjadi agen pengoksidasi yang sangat kuat. Elektron diekstraksi dari air dan dikirimkan ke P680 menggantikan elektron yang keluar dari klorofil. Air diuraikan menjadi hidrogen dan oksigen. Elektron yang terfotoeksitasi mengalir dari akseptor elektron primer ke fotosistem I melalui rantai transport elektron yang terdiri dari satu pembawa elektron yaitu plastokinon (Pq), suatu kompleks yang terdiri atas dua sitokrom , dan protein yang mengandung tembaga yang disebut plastosianin (Pc). Elektron yang menuruni rantai, eksergoniknya berada ke tingkat energi yang lebih rendah dan digunakan oleh tilakoid untuk menghasilkan ATP. Pmbentukan ATP disebut fosforilasi karena digerakkan oleh energi cahaya. Elektron selanjutnya mencapai pusat P700 yang telah kehilangan elektronnya, karena energy cahaya menggerakkan electron dari P700 ke akseptor electron primer pada fotosistem I. Selanjutnya electron ditransfer melalui transfer electron . disalurkan ke feredoksin (Fd). NADP+ reduktase menyalurkan electron dari Fd ke NADP+. NADP+ berubah menjadi NADPH. Aliran Elektron siklik Elektron yang terfotoeksitasi dapat melalui jalur khusus yaitu aliran electron siklik. Aliran ini menggnakan fotosistem I saja. Elektron kembali dari feredoksin ke kompleks sitokrom dank e klorofil P700. NADPH tidak diproduksi tetapi menghasilkan ATP. Proses pembentukan ATP ini disebut fosforilasi siklik. Siklus Calvin Siklus Calvin dibagi menjadi tiga tahap yaitu : Fiksasi karbon. Molekul CO2 diikat pada ribulosa bifosfat (RuBP) dengan bantuan RuBP karboksilase atau Rubisco. Reaksi ini menghasilkan dua molekul 3-fosfogliserat. Reduksi. Tiap molekul 3-fosfogliserat menerima gugus fosfat baru dari ATP menghasilkan 1,3-difosfogliserat. Selanjutnya 1,3 difosfogliserat direduksi oleh sepasang electron dari NADPH menjadi gliseraldehid 3-fosfat (G3P). G3P merupakan gula. Setiap 3 molekul CO2 terdapat 6 molekul G3P, tetapi hanya 1 molekul G3P yang dihitung sebagai selisih perolehan karbohidrat. Satu molekul keluar siklus dan digunakan oleh tumbuhan, sedangkan 5 molekul didaur ulang untuk menghasilkan 3 molekul RuBP. Regenerasi akseptor CO2. Lima molekul G3P disusun ulang dalam langkah terakhir siklus Calvin menjadi 3 molekul RuBP yang siap menerima CO2 kembali. Tumbuhan C4 Tumbuhan C4 memfiksasi karbon dengan membentuk senyawa berkarbon empat sebagai produknya. Tergolong tumbuhan C4 yang penting dalam pertanian adalah tebu, jagung, dan famili rumput. Dalam tumbuhan C4 terdapat dua jenis sel fotosintetik : sel seludang-berkas pembuluh dan sel mesofil. Sel seludang berkas pembuluh tersusun menjadi kemasan yang padat di sekitar berkas pembuluh. Di antara seludang-berkas pembuluh dan epidermis daun terdapat sel mesofil. Siklus Calvin terbatas pada kloroplas seludang-berkas pembuluh. Siklus ini didahului oleh masuknya CO2ke dalam senyawa organik dalam mesofil. Tahap pertama adalah penambahan CO2 pada fosfoenolpiruvat (PEP) untuk membentuk oksaloasetat (memiliki empar karbon). Enzim karboksilase menambahkan CO2 pada PEP. Setelah memfiksasi CO2, sel mesofil mengirim keluar produk berkarbon empat ke sel seludang-berkas pembuluh melalui plasmodesmata. Dalam seludang-berkas pembuluh, senyawa berkarbon empat melepaskan CO2 yang diasimilasi ulang ke dalam materi organik oleh rubisko dan siklus Calvin. Sel mesofil tumbuhan C4 memompa CO2 ke dalam seludang-berkas pembuluh, mempertahankan konsentrasi CO2 dalam seludang-berkas pembuluh cukup tinggi agar rubisko dapat menerima CO2bukan O2. Fotosintesis C4 meminimumkan fotorespirasi dan meningkatkan produksi gula. Tumbuhan CAM Tumbuhan lain seperti tumbuhan sukulen (penyimpan air), kaktus, nenas dan beberapa family lain memiliki adaptasi fotosintesis yang lain. Tumbuhan ini membuka stomata pada malam hari dan menutup pada siang hari. Stomata yang menutup pada siang hari membuat tumbuhan menghemat air tetapi mencegah masuknya CO2. Saat stomata terbuka pada malam hari, tumbuhan mengambil CO2 dan memasukkannya ke berbagai asam organic. Metabolism ini disebut crassulacean acid metabolism (CAM). Sel mesofil tumbuhanCAM menyimpan asam organic yang dibuatnya selama malam hari di dalam vakuola hingga pagi hari. Pada siang hari saat reaksi terang menyediakan ATP dan NADPH untuk siklus Calvin, CO2dilepas dari asam organik yang dibuat pada malam hari itu sebelum dimasukkan ke dalam gula dalam kloroplas. Download Slide Fotosintesis (PPT) Pustaka : Campbell, N.A., Reece, J.B., Mitchell, L.G. 2002. Biologi. Alih bahasa lestari, R. et al. safitri, A., Simarmata, L., Hardani, H.W. (eds). Erlangga, Jakarta. Moore, R., Clark, W.D., Vodopich, D.S. 1998. Botany. McGraw-Hill Companies. USA RESPIRASI Oleh: Subhan Pradana Respirasi adalah suatu proses pengambilan O2 untuk memecah senyawa-senyawa organik menjadi CO2, H2O dan energi. Namun demikian respirasi pada hakikatnya adalah reaksi redoks, dimana substrat dioksidasi menjadi CO2 sedangkan O2 yang diserap sebagai oksidator mengalami reduksi menjadi H2O. Yang disebut substrat respirasi adalah setiap senyawa organik yang dioksidasikan dalam respirasi, atau senyawa-senyawa yang terdapat dalam sel tumbuhan yang secara relatif banyak jumlahnya dan biasanya direspirasikan menjadi CO2 dan air. Sedangkan metabolit respirasi adalah intermediat-intermediat yang terbentuk dalam reaksi-reaksi respirasi. Karbohidrat merupakan substrat respirasi utama yang terdapat dalam sel tumbuhan tinggi. Terdapat beberapa substrat respirasi yang penting lainnya diantaranya adalah beberapa jenis gula seperti glukosa, fruktosa, dan sukrosa; pati; asam organik; dan protein (digunakan pada keadaan & spesies tertentu). Secara umum, respirasi karbohidrat dapat dituliskan sebagai berikut: C6H12O6 + O2 6CO2 + H2O + energi Reaksi di atas merupakan persamaan rangkuman dari reaksi-reaksi yang terjadi dalam proses respirasi. Reaksi tersebut terlihat sangat sederhana, terlihat seakan respirasi merupakan reaksi tunggal, sehingga mungkin dapat agak menyesatkan karena respirasi yang sebenarnya bukanlah reaksi tunggal. Respirasi merupakan rangkaian dari banyak reaksi komponen, yang masing-masingnya dikatalisis oleh enzim yang berbeda. Respirasi dapat digolongkan menjadi dua jenis berdasarkan ketersediaan O2 di udara, yaitu respirasi aerob dan respirasi anaerob. Respirasi aerob merupakan proses respirasi yang membutuhkan O2, sebaliknya respirasi anaerob merupakan proses repirasi yang berlangsung tanpa membutuhkan O2. Respirasi anaerob sering disebut juga dengan nama fermentasi. Perbedaan antara keduanya akan terlihat pada proses tahapan reaksi dalam respirasi. Respirasi banyak memberikan manfaat bagi tumbuhan. Manfaat tersebut terlihat dalam proses respirasi dimana terjadi proses pemecahan senyawa organik, dari proses pemecahan tersebut maka dihasilkanlah senyawa-senyawa antara yang penting sebagai ”Building Block”. Building Block merupakan senyawa-senyawa yang penting sebagai pembentuk tubuh. Senyawa-senyawa tersebut meliputi asam amino untuk protein; nukleotida untuk asam nukleat; dan prazat karbon untuk pigmen profirin (seperti klorofil dan sitokrom), lemak, sterol, karotenoid, pigmen flavonoid seperti antosianin, dan senyawa aromatik tertentu lainnya, seperti lignin. Telah diketahui bahwa hasil akhir dari respirasi adalah CO2 dan H2O, hal ini terjadi bila substrat secara sempurna dioksidasi, namun bila berbagai senyawa di atas terbentuk, substrat awal respirasi tidak keseluruhannya diubah menjadi CO2 dan H2O. Hanya beberapa substrat respirasi yang dioksidasi seluruhnya menjadi CO2 dan H2O, sedangkan sisanya digunakan dalam proses anabolik, terutama di dalam sel yang sedang tumbuh. Sedangkan energi yang ditangkap dari proses oksidasi sempurna beberapa senyawa dalam proses respirasi dapat digunakan untuk mensintesis molekul lain yang dibutuhkan untuk pertumbuhan. Laju respirasi dapat dipengaruhi oleh beberapa faktor antara lain: Ketersediaan substrat. Tersedianya substrat pada tanaman merupakan hal yang penting dalam melakukan respirasi. Tumbuhan dengan kandungan substrat yang rendah akan melakukan respirasi dengan laju yang rendah pula. Demikian sebliknya bila substrat yang tersedia cukup banyak maka laju respirasi akan meningkat. Ketersediaan Oksigen. Ketersediaan oksigen akan mempengaruhi laju respirasi, namun besarnya pengaruh tersebut berbeda bagi masing-masing spesies dan bahkan berbeda antara organ pada tumbuhan yang sama. Fluktuasi normal kandungan oksigen di udara tidak banyak mempengaruhi laju respirasi, karena jumlah oksigen yang dibutuhkan tumbuhan untuk berrespirasi jauh lebih rendah dari oksigen yang tersedia di udara. Suhu. Pengaruh faktor suhu bagi laju respirasi tumbuhan sangat terkait dengan faktor Q10, dimana umumnya laju reaksi respirasi akan meningkat untuk setiap kenaikan suhu sebesar 10oC, namun hal ini tergantung pada masing-masing spesies. Tipe dan umur tumbuhan. Masing-masing spesies tumbuhan memiliki perbedaan metabolsme, dengan demikian kebutuhan tumbuhan untuk berespirasi akan berbeda pada masing-masing spesies. Tumbuhan muda menunjukkan laju respirasi yang lebih tinggi dibanding tumbuhan yang tua. Demikian pula pada organ tumbuhan yang sedang dalam masa pertumbuhan. Proses r1espirasi diawali dengan adanya penangkapan O2 dari lingkungan. Proses transport gas-gas dalam tumbuhan secara keseluruhan berlangsung secara difusi. Oksigen yang digunakan dalam respirasi masuk ke dalam setiap sel tumbuhan dengan jalan difusi melalui ruang antar sel, dinding sel, sitoplasma dan membran sel. Demikian juga halnya dengan CO2 yang dihasilkan respirasi akan berdifusi ke luar sel dan masuk ke dalam ruang antar sel. Hal ini karena membran plasma dan protoplasma sel tumbuhan sangat permeabel bagi kedua gas tersebut. Setelah mengambil O2 dari udara, O2 kemudian digunakan dalam proses respirasi dengan beberapa tahapan, diantaranya yaitu glikolisis, dekarboksilasi oksidatif, siklus asam sitrat, dan transpor elektron. Tahapan yang pertama adalah glikolisis, yaitu tahapan pengubahan glukosa menjadi dua molekul asam piruvat (beratom C3), peristiwa ini berlangsung di sitosol. As. Piruvat yang dihasilkan selanjutnya akan diproses dalam tahap dekarboksilasi oksidatif. Selain itu glikolisis juga menghasilkan 2 molekul ATP sebagai energi, dan 2 molekul NADH yang akan digunakan dalam tahap transport elektron. Dalam keadaan anaerob, As. Piruvat hasil glikoisis akan diubah menjadi karbondioksida dan etil alkohol. Proses pengubahan ini dikatalisis oleh enzim dalam sitoplasma. Dalam respirasi anaerob jumlah ATP yang dihasilkan hanya dua molekul untuk setiap satu molekul glukosa, hasil ini berbeda jauh dengan ATP yang dihasilkan dari hasil keseluruhan respirasi aerob yaitu 36 ATP. Tahapan kedua dari respirasi adalah dekarboksilasi oksidatif, yaitu pengubahan asam piruvat (beratom C3) menjadi Asetil KoA (beratom C2) dengan melepaskan CO2, peristiwa ini berlangsung di sitosol. Asetil KoA yang dihasilkan akan diproses dalam siklus asam sitrat. Hasil lainnya yaitu NADH yang akan digunakan dalam transpor elektron. Tahapan selanjutnya adalah siklus asam sitrat (daur krebs) yang terjadi di dalam matriks dan membran dalam mitokondria, yaitu tahapan pengolahan asetil KoA dengan senyawa asam sitrat sebagai senyawa yang pertama kali terbentuk. Beberapa senyawa dihasilkan dalam tahapan ini, diantaranya adalah satu molekul ATP sebagai energi, satu molekul FADH dan tiga molekul NADH yang akan digunakan dalam transfer elektron, serta dua molekul CO2. Tahapan terakhir adalah transfer elektron, yaitu serangkaian reaksi yang melibatkan sistem karier elektron (pembawa elektron). Proses ini terjadi di dalam membran dalam mitokondria. Dalam reaksi ini elektron ditransfer dalam serangkaian reaksi redoks dan dibantu oleh enzim sitokrom, quinon, piridoksin, dan flavoprotein. Reaksi transfer elektron ini nantinya akan menghasilkan H2O. ENERGI DAN PRODUKSI PERTANIAN Pertanian pada dasamya berhubungan dengan perubahan energi matahari ke dalam bentuk bahan pangan maupun serat. Penggunaan energi untuk kegiatan tanaman Energi matahari merupakan sumber utama hubungannnya dengan pertumbuhan tanaman, sembilan puluh persen bahan kering tanaman pertanian berasal dari perubahan carbon melalui proses fotosintesis yang tergantung cahaya. Belakangan ini banyak ahli biologi yang mencoba menghitung produktivitas tanaman dengan memperhatikan penangkapan energi matahari dan pengubahannya ke energi kimia melalui proses fotosintesis. Bahan dan hasil akhir proses fotosintesis ditulis sebagai berikut: (energi cahaya 673.000 kalori + klorofil) 6 CO2 + 12 H2O C6H12O6 + 6 O2 + 6 H2O Energi cahaya matahari yang digunakan berasal dari panjang gelombang 0,4 - 0,7 mikron. Efisiensi fotosintesis dipengaruhi oleh laju fotosintesis. Laju fotosintesis akan meningkat dengan meningkatnya cahaya sampai batas-batas tertentu, walaupun laju fotosintesis meningkat dengan meningkatnya intensitas cahaya, tetapi peningkatannya lambat sehingga efisiensi penangkapan cahaya menurun. Apabila intensitas cahaya tinggi secara relatif lebih banyak cahaya tegak yang dipantulkan oleh daun-daun. Masuknya cahaya ke tajuk tanaman dipengaruhi oleh sudut datangnya sinar dan susunan daun, tajuk yang ideal untuk distribusi cahaya mempunyai susunan daun merata, pada bagian atas tajuk mempunyai daun-daun lebih tegak dan lebih kecil sedang daun-daun bawah tersusun secara horizontal. Konsep aliran energi dalam pertanian Dengan menganggap tanaman sebagai alat penangkap, perubah dan penyimpan energi, maka timbul usaha menaikkan efisiensi dan produktivitas tanaman. Didaerah yang padat tanaman, beberapa faktor lingkungan segera menjadi berkurang, cahaya, kelembaban tanah dan unsur hara. Hal ini merupakan faktor pembatas dalam pertanian, pemupukan merupakan salah satu cara yang baik untuk meningkatkan produksi. Efisiensi pertanian dapat diperoleh dengan pcrbaikan tanaman melalui pemuliaan tanaman. Salah satu usaha untuk memperluas alat penangkap energi dengan memperpanjang musim tanam misalnya menggunakan rumah kaca untuk tanaman yang memungkinkan input teknologi dan modal besar seperti tanaman hortikultura di daerah iklim sedang. Usaha mempengaruhi laju fotosintesis dengan cara pertukaran CO2 antara dedaunan dan atmosfer di sekitarnya. Di wilayah yang sebelumnya angin kurang diperhatikan, hasil jagung dapat ditingkatkan bila barisan tanaman diarahkan tegak lurus arah angin, sehingga pucuk tanaman tertiup angin dan terjadi perputaran dan pencampuran udara. Diposkan oleh BioUntirta07 di 07.56 Tidak ada komentar: Poskan Komentar ENZIM DAN RESPIRASI PADA TUMBUHAN I. ENZIM PADA TUMBUHAN 1. SEJARAH TENTANG ENZIM Pada awalnya, enzim dikenal sebagai protein oleh Sumner ( 1926 ) yang telah berhasil mengisolasi urease dari tumbuhan kara pedang. Urease adalah enzimysng dapat menguraikan urea menjadi CO2 dan NH3. Beberapa tahun kemudian Northrop dan Kunits dapat mengisolasi pepsin, tripsin, dan kinotripsin. Kemudian makin banyak enzim yang telah dapat diisolasi dan telah dibuktikan bahwa enzim tersebut ialah protein. Dari hasil penelitian para ahli biokim ternyata banyak enzim mempunyai gugus bukan protein, jadi termasuk golongan protein majemuk. Gugus bukan protein ini disebut dengan kofaktor ada yang terikat kuat pada protein dan ada pula yang tidak terikat kuat oleh protein.. Gugus terikat kuat pada bagian protein artinya sukar terurai dalam larutan yang disebut dengan Prostetik, sedang yang tidak begitu terikat kuat ( mudah dipisahkan secara dialisis ) disebut dengan Koenzim. Keduanya ini dapat memungkinkan enzim bekerja terhadap substrat. 2. PENGERTIAN ENZIM ü Enzim ialah suatu zat yang dapat mempercepat laju reaksi dan ikut beraksi didalamnya sedang pada saat akhir proses enzim akan melepaskan diri seolah – olah tidak ikut bereaksi dalam proses tersebut. ü Enzim merupakan reaksi atau proses kimia yang berlangsung dengan baik dalam tubuh makhluk hidup karena adanya katalis yang mampu mempercepat reaksi. Koenzim mudah dipisahkan dengan proses dialisis. ü Enzim berperan secara lebih spesifik dalam hal menentukan reaksi mana yang akan dipacu dibandingkan dengan katalisator anorganik sehingga ribuan reaksi dapat berlangsung dengan tidak menghasilkan produk sampingan yang beracun. ü Enzim terdiri dari apoenzim dan gugus prostetik. Apoenzim adalah bagian enzim yang tersusun atas protein. Gugus prostetik adalah bagian enzim yang tidak tersusun atas protein. Gugus prostetik dapat dikelompokkan menjadi dua yaitu koenzim (tersusun dari bahan organik) dan kofaktor (tersusun dari bahan anorganik). 3. PERBEDAAN ENZIN DENGAN KATALISATOR ü Katalisator bersifat umum, hanya berfungsi untuk mempercepat reaksi yang dapat digunakan berulang - ulang ( satu katalisator mampu mereaksikan 2 atau 3 bahkan lebih reaksi) ü Enzim bersifat lebih spesifik hanya digunakan untuk satu reaksi saja ( satu enzim hanya untuk satu reaksi) 4. METABOLISME TUMBUHAN Tumbuhan juga mengahasilkan senyawa metabolit sekunder yang berfungsi untuk melindungi tumbuhan dari serangan serangga, bakteri, jamur dan jenis patogen lainnya serta tumbuhan itu mampu menghasilkan vitamin untuk kepentingan tumbuhan itu sendiri serta hormon – hormon yang merupakan sarana bagi tumbuhan untuk berkomunikasi antara organnya atau jaringannya dalam mengendalikan dan mengkoordinasi pertumbuhan dan perkembangannya. Dalam tumbuhan pun terdapat proses metabolisme tumbuhan yang terdiri dari anabolisme ( pembentkan senyawa yang lebih besar dari molekul – molekul yang lebih kecil, molekul ini terdiri dari pati, selulose, protein, lemak dan asam lemak. Prioses ini membutuhkan energi).Sedang katabolisme merupakan senyawa dengan molekul yang besar membentuk senyawa – senyawa dengan molekul yang lebih kecil dan menghasilkan energi. Sel dalam tubuh tumbuhan mampu mengatur lintasan – lintasan metabolik yang dikendalikannnya agar terjadi dan dapat mengatur kecepatan reaksi tersebut dengan cara memproduksi suatu katalisator dalam jumlah yang sesuai dan tepat pada saat dibutuhkan. Katalisator inilah yang disebut denagn enzim yang mampu mempercepat laju reaksi yang berkisar antara 108 sampai 1020. 5. SIFAT – SIFAT ENZIM Sifat-sifat enzim adalah sebagai berikut: 1 Biokatalisator Enzim mempercepat laju reaksi, tetapi tidak ikut bereaksi. 2 Termolabil Enzim mudah rusak bila dipanaskan sampai dengan suhu tertentu. 3 Merupakan senyawa protein 4 Bekerja secara spesifik.Satu jenis enzim bekerja secara khusus hanya pada satu jenis substrat. Misalnya enzim katalase menguraikan Hidrogen peroksida (H2O2) menjadi air (H2O) dan oksigen (O2), sedangkan enzim lipase menguraikan lemak + air menjadi gliserol + asam lemak. F. SUSUNAN ENZIM Secara kimia, enzim yany lengkap (holoenzim) tersusun atas 2 bagian yaitu: 1. Bagian protein disebut Apoenzim yang bersifat labil ( mudah berubah) yang dipengaruhi oleh suhu dan keasaman. 2. Bagian yang bukan protein yang disebut dengan gugus prostetik ( gugusan aktif) yang berasal dari kofaktor. G. KOMPOSISI KIMIA DAN STRUKTUR 3-DIMENSI ENZIM Setiap enzim terbentuk dari molekul protein sebagai komponen utama penyusunnya dan bebrapa enzim hanya terbentuk dari molekul protein dengan tanpa adanya penambahan komponen lain. Protein lainnya seperti Sitokrom yang membawa elektron pada fotosintesis dan respirasi tidak pula dapat digolongkan sebagai enzim. Selain itu, protein yang terdapat dalam biji juga lebih berperan sebagai bahan cadangan untuk digunakan dalam proses perkecambahan biji. Protein hanya terbentuk dari satu ikatan poloipeptida yang menggumpal membentuk suatu struktur yang bulat atau sperikal, contohnya ribonuklease. Setiap rantai polipeptida atau molekul protein secara sponstan akan membentuk konfigurasi dengan energi bebas terendah. Dalam sitisol sel, asam amino lebih bersifat hidrofobik yang akan mengumpul pada bagian dalam, sedang pada permukaan molekul protein atau enzim asan amino bersifat hidrofilik. H. KOMPERTEMENTASI ENZIM Enzim – enzim yang berperan untuk fotosintesis terdapat pada kloroplas. Enzim yang berperan penting dalam respirasi aerobik terdapat pada mitokondria, sedang enzim respirasi lainnya terdapat dalam sitosol. Kompertemenisasi enzi akan meningkat edisiensi banyak proses yang beralngsung di dalam sel, karena : 1. Reaktan tersedia pada tempat dimana enzim tersedia. 2. Senyawa akan dikonversi dikirim ke arah enzim yang berperan untuk menghasilakn produk sesuai yang dikehendaki dan tidak disimpangkan pada lintasan yang lain. Akan tetapi kompartemenisasi ini tidak bersifat absolut. I. FUNGSI SPESIFIK, NOMENKLATUR dan PENGGOLONGAN ENZIM. a. Fungsi Enzim Yaitu sebagai katalis untuk proses biokimia yang terjadi dalam sel maupun di luar sel makhluk hidup. Enzim ini berfungsi sebagai katalis yang sangan efisien dan mempunyai derajat yang tinggi. b. Tata nama dan Kekhasan Enzim Setiap enzim disesuaikan dengan nama substratnya dengan menambahkan “ase” dibelakangnya. Kekhasan enzim asam amino sebagai substrat dapat mengalami reaksi berbagai enzim. c.Penggolongan Enzim Enzim dapat digolongkan ke dalam 6 golongan yaitu : 1. Oksidoreduktase terdapat dua enzimyaitu dehidrogenase dan oksidasi 2. Transferase yaitu enzim yang bekerja sebagai katalis pada reaksi pemindahan suatu gugus dari suatu senyawa lain 3. Hidrolase yaitu sebagai katalis reaksi hidrolisis 4. Liase berperan dalam proses pemisahan 5. Isomerase bekerja pada reaksi intramolekuler 6. Ligase bekerja pada penggabungan dua molekul J. CIRI- CIRI ENZIM Ciri – ciri dari enzim ialah sebagai berikut : 1. Merupakan sebuah protein, Jadi sifatnya sama dengan protein yaitu dapat menggumpal dalam suhu tinggi dan terpengaruh oleh temperatur. 2. Bekerja secara khusus Artinya hanya untuk bekerja dalam satu reaksi saja tidak dapat digunakan dalam beberapa reaksi. 3. Dapat digunakan berulang kali Enzim dapat digunakan berulang kali karena enzim tidak berubah pada saat terjadi reaksi. 4. Rusak oleh panas Enzim tidak tahan pada suhu tinggi, kebanyakan enzim hanya bertahan pada suhu 500C, rusaknya enzim oleh panas disebut dengan denaturasi, 5. Dapat bekerja bolak – balik Artinya satu enzim dapat menguraikan satu senyawa menjadi senyawa yang lain. K. ISOZIM Isozim atau Iso-enzim adalah dalam suatu campuran terdapat lebih dari satu enzim yang dapat berperan dalam suatu substrat untuk memberikan suatu hasil yang sama. Keuntungan bagi tumbuhan yang mengandung isoenzim adalah karena isozim – isozim tersebut akan memiliki tanggapan yang berbeda terhadap faltor – faktor lingkungan. Setiap isozim dihadapkan pada lingkungan kimia yang berbeda dab masing – masing berperan pada posisi yang berbeda dalam lintasan metabolic. L. CARA KERJA ENZIM Molekul selalu bergerak dan bertumbukan satu sama lain. Jika suau molekul substrat menumbuk molekul enzim yangtepat maka akan menempel pada enzim. Tempat menempelnya molekul substrat pada enzim disebut dengan sisi aktif. Ada dua teori yang menjelaskan mengenai cara kerja enzim yaitu: 1 Teori kunci dan gembok Teori ini diusulkan oleh Emil Fischer pada 1894. Menurut teori ini, enzim bekerja sangat spesifik. Enzim dan substrat memiliki bentuk geometri komplemen yang sama persis sehingga bisa saling melekat. 2 Teori ketepatan induksi Teori ini diusulkan oleh Daniel Koshland pada 1958. Menurut teori ini, enzim tidak merupakan struktur yang spesifik melainkan struktur yang fleksibel. Bentuk sisi aktif enzim hanya menyerupai substrat. Ketika substrat melekat pada sisi aktif enzim, sisi aktif enzim berubah bentuk untuk menyerupai substrat. M. FAKTOR YANG MEMPENGARUHI KERJA ENZIM Ada banyak faktor yang mempengaruhi kerja enzim, yaitu: 1 Suhu Semakin tinggi suhu, kerja enzim juga akan meningkat. Tetapi ada batas maksimalnya. Untuk hewan misalnya, batas tertinggi suhu adalah 40ºC. Bila suhu di atas 40ºC, enzim tersebut akan menjadi rusak. Sedangkan untuk tumbuhan batas tertinggi suhunya adalah 25ºC. 2 pH Pengaruh pH terhadap suatu enzim bervariasi tergantung jenisnya. Ada enzim yang bekerja secara optimal pada kondisi asam. Ada juga yang bekerja secara optimal pada kondisi basa. 3 Konsentrasi substrat Semakin tinggi konsentrasi substrat, semakin meningkat juga kerja enzim tetapi akan mencapai titik maksimal pada konsentrasi tertentu. 4 Konsentrasi enzim Semakin tinggi konsentrasi enzim, semakin meningkat juga kerja enzim. 5 Adanya aktivator Aktivator merupakan zat yang memicu kerja enzim. 6 Adanya inhibitor Inhibitor merupakan zat yang menghambat kerja enzim. Inhibitor ini terdiri dari : ü Hambatan Reversibel Yang disebabkan oleh terjadinya proses destruksi atau modifikasi sebuah gugus fungsi atau lebih yang terdapat pada molekul enzim. Hambatan reversible dapat berupa hambatan bersaing dan hambatan tidak bersaing. Hambatan bersaing disebabkan karena adanya molekul yang mirip dengan substrat, yang dapat pula membentuk kompleks yaitu kompleks enzim inhibitor (EI), sedang hambatan tidak bersaing ini tidak dipengaruhi oleh besarnya konsentrasi substrat dan inhibitor yang melakukannya disebut inhibitor tidak bersaing. ü Hambatan tidak Reversibel Hambatan tidak reversible ini terjadi karena inhibitor bereaksi tidak reversible dengan bagian tertentu pada enzim, sehingga mengakibatkan berubahnya bentuk enzim. ü Hambatan Alosterik Hambatan ruang karena enzim tersebut tidak berbentuk hiperbola seperti enzim – enzim ang lain tetapi akan terjadi grafik yang berbentuk sigmoida. II. RESPIRASI PADA TUMBUHAN A. PENGERTIAN RESPIRASI ü Respirasi adalah suatu proses pengambilan O2 untuk memecah senyawa-senyawa organik menjadi CO2, H2O dan energi. Namun demikian respirasi pada hakikatnya adalah reaksi redoks, dimana substrat dioksidasi menjadi CO2 sedangkan O2 yang diserap sebagai oksidator mengalami reduksi menjadi H2O. Yang disebut substrat respirasi adalah setiap senyawa organik yang dioksidasikan dalam respirasi, atau senyawa-senyawa yang terdapat dalam sel tumbuhan yang secara relatif banyak jumlahnya dan biasanya direspirasikan menjadi CO2 dan air. Sedangkan metabolit respirasi adalah intermediat-intermediat yang terbentuk dalam reaksi-reaksi respirasi ü Respirasi yaitu suatu proses pembebasan energi yang tersimpan dalam zat sumber energi melalui proses kimia dengan menggunakan oksigen. Dari respirasi akan dihasilkan energi kimia ATP untak kegiatan kehidupan, seperti sintesis (anabolisme), gerak, pertumbuhan. ü Ditinjau dari kebutuhannya akan oksigen, rspirasi dapat dibedakan menjadi respirasi aerob yaitu respirasi yang menggunakan oksigen bebas untuk mendapatkan energi dan respirasi anaerob atau biasa disebut dengan proses fermentasi yaitu respirasi yang tidak menggunakan oksigen namun bahan bukunya adalah seperti karbohidrat, asam lemak, asam amino sehingga hasil respirasi berupa karbondioksida, air dan energi dalam bentuk ATP. ü Karbohidrat merupakan substrat respirasi utama yang terdapat dalam sel tumbuhan tinggi. Terdapat beberapa substrat respirasi yang penting lainnya diantaranya adalah beberapa jenis gula seperti glukosa, fruktosa, dan sukrosa; pati; asam organik; dan protein (digunakan pada keadaan & spesies tertentu). Secara umum, respirasi karbohidrat dapat dituliskan sebagai berikut: C6H12O6 + O2 6CO2 + H2O + energi Reaksi di atas merupakan persamaan rangkuman dari reaksi-reaksi yang terjadi dalam proses respirasi. ü Contoh: Respirasi pada Glukosa, reaksi sederhananya: C6H,206 + 6 02 ———————————> 6 H2O + 6 CO2 + Energi (glukosa) B. REAKSI PADA RESPIRASI ü Reaksi pembongkaran glukosa sampai menjadi H20 + CO2 + Energi, melalui tiga tahap : 1. Glikolisis. 2. Daur Krebs. 3. Transpor elektron respirasi. 1. Glikolisis: Peristiwa perubahan : Glukosa Þ Glulosa - 6 - fosfat Þ Fruktosa 1,6 difosfat Þ 3 fosfogliseral dehid (PGAL) / Triosa fosfat Þ Asam piravat. Jadi hasil dari glikolisis : - molekul asam piravat. - molekul NADH yang berfungsi sebagai sumber elektron berenergi tinggi. - molekul ATP untuk setiap molekul glukosa. 2. Daur Krebs (daur trikarbekdlat): Daur Krebs (daur trikarboksilat) atau daur asam sitrat merupakan pembongkaran asam piravat secara aerob menjadi CO2 dan H2O serta energi kimia 3. Rantai Transportasi Elektron Respiratori: Dari daur Krebs akan keluar elektron dan ion H+ yang dibawa sebagai NADH2 (NADH + H+ + 1 elektron) dan FADH2, sehingga di dalam mitokondria (dengan adanya siklus Krebs yang dilanjutkan dengan oksidasi melalui sistem pengangkutan elektron) akan terbentuk air, sebagai hasil sampingan respirasi selain CO2. ü Produk sampingan respirasi tersebut pada akhirnya dibuang ke luar tubuh melalui stomata pada tumbuhan dan melalui paru-paru pada peristiwa pernafasan hewan tingkat tinggi. C. PROSES AKSEPTOR ATP Ketiga proses respirasi yang penting tersebut dapat diringkas sebagai berikut: 1. Glikolisis: Glukosa ——> 2 asam piruvat 2 NADH 2 ATP 2. Siklus Krebs: 2 asetil piruvat ——> 2 asetil KoA + 2 C02 2 NADH 2 ATP 2 asetil KoA ——> 4 CO2 6 NADH 2 PADH2 3. Rantai trsnspor elektron respirator: 10 NADH + 502 ——> 10 NAD+ + 10 H20 30 ATP 2 FADH2 + O2 ——> 2 PAD + 2 H20 4 ATP Total 38 ATP D. MANFAAT RESPIRASI Respirasi banyak memberikan manfaat bagi tumbuhan. Manfaat tersebut terlihat dalam proses respirasi dimana terjadi proses pemecahan senyawa organik, dari proses pemecahan tersebut maka dihasilkanlah senyawa-senyawa antara yang penting sebagai ”Building Block”. Building Block merupakan senyawa-senyawa yang penting sebagai pembentuk tubuh. Senyawa-senyawa tersebut meliputi asam amino untuk protein; nukleotida untuk asam nukleat; dan prazat karbon untuk pigmen profirin (seperti klorofil dan sitokrom), lemak, sterol, karotenoid, pigmen flavonoid seperti antosianin, dan senyawa aromatik tertentu lainnya, seperti lignin. Telah diketahui bahwa hasil akhir dari respirasi adalah CO2 dan H2O, hal ini terjadi bila substrat secara sempurna dioksidasi, namun bila berbagai senyawa di atas terbentuk, substrat awal respirasi tidak keseluruhannya diubah menjadi CO2 dan H2O. Hanya beberapa substrat respirasi yang dioksidasi seluruhnya menjadi CO2 dan H2O, sedangkan sisanya digunakan dalam proses anabolik, terutama di dalam sel yang sedang tumbuh. Sedangkan energi yang ditangkap dari proses oksidasi sempurna beberapa senyawa dalam proses respirasi dapat digunakan untuk mensintesis molekul lain yang dibutuhkan untuk pertumbuhan. E. LAJU RESPIRASI Laju respirasi dapat dipengaruhi oleh beberapa faktor antara lain: ü Ketersediaan substrat. Tersedianya substrat pada tanaman merupakan hal yang penting dalam melakukan respirasi. Tumbuhan dengan kandungan substrat yang rendah akan melakukan respirasi dengan laju yang rendah pula. Demikian sebliknya bila substrat yang tersedia cukup banyak maka laju respirasi akan meningkat. ü Ketersediaan Oksigen. Ketersediaan oksigen akan mempengaruhi laju respirasi, namun besarnya pengaruh tersebut berbeda bagi masing-masing spesies dan bahkan berbeda antara organ pada tumbuhan yang sama. Fluktuasi normal kandungan oksigen di udara tidak banyak mempengaruhi laju respirasi, karena jumlah oksigen yang dibutuhkan tumbuhan untuk berrespirasi jauh lebih rendah dari oksigen yang tersedia di udara. ü Suhu. Pengaruh faktor suhu bagi laju respirasi tumbuhan sangat terkait dengan faktor Q10, dimana umumnya laju reaksi respirasi akan meningkat untuk setiap kenaikan suhu sebesar 10oC, namun hal ini tergantung pada masing-masing spesies. ü Tipe dan umur tumbuhan. Masing-masing spesies tumbuhan memiliki perbedaan metabolsme, dengan demikian kebutuhan tumbuhan untuk berespirasi akan berbeda pada masing-masing spesies. Tumbuhan muda menunjukkan laju respirasi yang lebih tinggi dibanding tumbuhan yang tua. Demikian pula pada organ tumbuhan yang sedang dalam masa pertumbuhan. F. PROSES RESPIRASI ü Proses respirasi diawali dengan adanya penangkapan O2 dari lingkungan. Proses transport gas-gas dalam tumbuhan secara keseluruhan berlangsung secara difusi. Oksigen yang digunakan dalam respirasi masuk ke dalam setiap sel tumbuhan dengan jalan difusi melalui ruang antar sel, dinding sel, sitoplasma dan membran sel. Demikian juga halnya dengan CO2 yang dihasilkan respirasi akan berdifusi ke luar sel dan masuk ke dalam ruang antar sel. Hal ini karena membran plasma dan protoplasma sel tumbuhan sangat permeabel bagi kedua gas tersebut. Setelah mengambil O2 dari udara, O2 kemudian digunakan dalam proses respirasi dengan beberapa tahapan, diantaranya yaitu glikolisis, dekarboksilasi oksidatif, siklus asam sitrat, dan transpor elektron. Tahapan yang pertama adalah glikolisis, yaitu tahapan pengubahan glukosa menjadi dua molekul asam piruvat (beratom C3), peristiwa ini berlangsung di sitosol. As. Piruvat yang dihasilkan selanjutnya akan diproses dalam tahap dekarboksilasi oksidatif. Selain itu glikolisis juga menghasilkan 2 molekul ATP sebagai energi, dan 2 molekul NADH yang akan digunakan dalam tahap transport elektron. Dalam keadaan anaerob, As. Piruvat hasil glikoisis akan diubah menjadi karbondioksida dan etil alkohol. Proses pengubahan ini dikatalisis oleh enzim dalam sitoplasma. Dalam respirasi anaerob jumlah ATP yang dihasilkan hanya dua molekul untuk setiap satu molekul glukosa, hasil ini berbeda jauh dengan ATP yang dihasilkan dari hasil keseluruhan respirasi aerob yaitu 36 ATP. ü Tahapan kedua dari respirasi adalah dekarboksilasi oksidatif, yaitu pengubahan asam piruvat (beratom C3) menjadi Asetil KoA (beratom C2) dengan melepaskan CO2, peristiwa ini berlangsung di sitosol. Asetil KoA yang dihasilkan akan diproses dalam siklus asam sitrat. Hasil lainnya yaitu NADH yang akan digunakan dalam transpor elektron. ü Tahapan selanjutnya adalah siklus asam sitrat (daur krebs) yang terjadi di dalam matriks dan membran dalam mitokondria, yaitu tahapan pengolahan asetil KoA dengan senyawa asam sitrat sebagai senyawa yang pertama kali terbentuk. Beberapa senyawa dihasilkan dalam tahapan ini, diantaranya adalah satu molekul ATP sebagai energi, satu molekul FADH dan tiga molekul NADH yang akan digunakan dalam transfer elektron, serta dua molekul CO2. Tahapan terakhir adalah transfer elektron, yaitu serangkaian reaksi yang melibatkan sistem karier elektron (pembawa elektron). Proses ini terjadi di dalam membran dalam mitokondria. Dalam reaksi ini elektron ditransfer dalam serangkaian reaksi redoks dan dibantu oleh enzim sitokrom, quinon, piridoksin, dan flavoprotein. Reaksi transfer elektron ini nantinya akan menghasilkan H2O. G. PROSES FOTOSINTESIS DAUN Proses pembuatan makanan pada tumbuhan hijau dapat terjadi dengan bantuan: ü sinar matahari, ü air, ü garam mineral yang diserap ü serta karbondioksida dari udara diubah menjadi zat makanan yang diperlukan. ü Energi matahari membantu tumbuhan hijau dalam proses pembuatan makanannya. Binatang herbivora memakan tumbuhan, lalu dia dimangsa oleh binatang carnivora (pemakan daging). Bangkai binatang yang membusuk membentuk zat pengurai yang sangat diperlukan untuk proses pertumbuhan akar tumbuhan. ü Tumbuhan membutuhkan sinar matahari, air, dan udara untuk membuat makanannya sendiri. Setiap hari, zat hijau daun pada daun tanaman menyerap cahaya matahari. Tumbuhan memanfaatkan cahaya matahari menjadi karbon dioksida dari udara, dan air dari tanah menjadi makanan yang mengandung gula. Tumbuhan lalu mengeluarkan oksigen sebagai hasil yang tidak terpakai, walaupun sebagian digunakan untuk bernapas. Proses ini disebut fotosintesis. Makanan dapat disimpan di dalam tumbuhan dan digunakan bila diperlukan. Binatang dan manusia mengambil keuntungan dari kemampuan tumbuhan dalam membuat makanannya sendiri. Mereka makan banyak jenis tanaman dan makanan jenis ini menyimpan makanan juga. Contoh tanaman penghasil zat makanan yaitu: -Kentang, yang menyimpan tepung. -Pohon jeruk menghasilkan buah jeruk. -dsb. ü Namun ada juga jenis tumbuhan yang tidak dapat membuat makanannya sendiri dan tergantung pada tumbuhan lain. Contohnya: Tanaman saprofit seperti jamur, makanannya berupa sayuran yang membusuk atau bangkai binatang. Parasit seperti liana, pertumbuhan awalnya dimulai dari akar di dalam tanah. Batangnya yang lunak kemudian bercabang dua dan melilit tanaman inang (induknya) untuk menyerap air dan sari makanan. Setelah semua kebutuhannya tercukupi, akar aslinya akan mengering dan mati. Parasit seperti Rafflesia memperoleh makanannya dari akar tumbuhan lain. Rafflesia adalah tumbuhan yang tidak mempunyai daun atau batang. Merupakan bunga terbesar dan bisa mencapai diameter lebih dari 1 m. ü Sebagian besar tumbuhan berdaun hijau. Ini disebabkan tumbuhan berisi pigmen hijau atau zat warna yang disebut zat hijau daun (chlorofil). Hanya di bawah permukaan atas dari daun yang merupakan lapisan-lapisan dari sel-sel khusus, dikenal sebagai sel pagar. Di dalam masing-masing sel terdapat kotak yang sangat kecil berbentuk piringan hitam, disebut chloroplast. Chloroplast ini penuh zat hijau daun. ü Gerakan partikel dari tempat dengan potensial kimia lebih tinggi ke tempat dengan potensial kimia lebih rendah karena energi kinetiknya sendiri sampai terjadi keseimbangan dinamis •Osmosis : gerakan air dari potensial air lebih tinggi ke potensial air lebih rendah melewati membran selektif permeabel sampai dicapai keseimbangan dinamis.

apakah pendapat anda tentang blog ini?

RAMALAN CUACA

pendaftaran FMA

Powered byEMF HTML Contact Form

Total Tayangan Halaman

Popular Posts

Recent Posts

Social Media Sharing by CB Bloggerz

facebook

twitter